1. XenForo 1.5.14 中文版——支持中文搜索!现已发布!查看详情
  2. Xenforo 爱好者讨论群:215909318 XenForo专区

试着看懂,对「薛定谔的猫」的误会和可能解释

本帖由 漂亮的石头2015-02-01 发布。版面名称:知乎日报

  1. 漂亮的石头

    漂亮的石头 版主 管理成员

    注册:
    2012-02-10
    帖子:
    486,319
    赞:
    46
    如何向高中生解释「薛定谔的猫」这个实验?

    [​IMG] 刘慎修

    我把我的观点在前面简单说一下好了:

    如何向高中生解释?不能向高中生解释。这仍然是个前沿研究课题不是适合科普的话题,如果感受不到这个的区别,我把我在评论里吐的一个槽拉出来让大家感受一下向高中生解释前沿课题多么荒唐:
    1、如何向高中生解释 AdS/CFT correspondence?
    2、如何向高中生解释 single-band Hubbard model 和 five-band Hubbard model 产生超导各自的机理?
    3、如何向高中生解释怎样用 group cohomology 分类 symmetry protected topological phase?
    4、如何向高中生解释 Lifshitz gravity 的宇宙学效应?

    你!倒!是!解!释!啊!!!

    不好意思有点激动。

    不能因为薛定谔猫这个东西现在被娱乐化了就真的觉得好像是一个很容易理解的事情,这个问题在系统学习+足够的研究前莫说懂,懂问题出在哪儿都并不容易。其他的许多答案若说抖机灵,用一堆类比抖得倒可博君一笑,但是我只是希望大家知道他们抖的机灵是错误的。如果是严肃的科普,请不要拿抖机灵蒙事,这是误人子弟。

    对技术细节感兴趣的朋友可以往下读,但是个人感觉不是科班的话可能有些困难,抱歉。

    经常见对薛定谔猫的调侃和误解,不过我倒真没想到居然有这么多人真的以为自己懂了!

    其实我到现在都不理解这个思想实验,但是我想尽力试着写一写科普讨论一下我所认为的对这个问题的误会和可能的解释。因为不是退相干研究人员也许有所错漏,而且基本是基于我自己对量子力学和统计力学的理解,有可能学艺不精有所误解,如果有人做退相干或者对这个懂得比较多还望之处,谢谢。

    长文,技术细节多,如果没有兴趣可以直接拉到最底下看我的结论,即便有兴趣也最好先看结论在决定值得不值得讨论。如果有兴趣讨论这个问题却没心情读,抱歉我真的写不了更短了……

    首先是大家所说的量子力学中的“概率”,这个实际上是个伪命题,至少凭我学的知识来看,量子力学是个确定性的理论,真正有“概率”引入的是统计力学。所以要想说清楚这个思想实验只靠量子力学并不够,我后面会讲这一点。量子力学有薛定谔方程(路径积分表述不用偏微分方程刻画,但既然和薛定谔方程等价我们不妨把它放在一遍),是一个偏微分方程而已,在确定初边条件下有唯一解,也就是说如果给定约束条件,波函数的演化是唯一确定的(当然假想我们有无穷的计算能力),这和经典力学没什么两样。

    问题出在对波函数的解释上,也就是大家所说的测量。我们量子力学课程中会学对于态[​IMG][​IMG],粒子在[​IMG]的概率是[​IMG],测量会导致量子态的坍缩,换言之就是你制备[​IMG]个态在[​IMG]上,一个测量算符是[​IMG],然后[​IMG][​IMG][​IMG]的本征态,那你大致会测出来有[​IMG]次和[​IMG]一样,剩下的和[​IMG]一样(当然严格地说是你有多少多少的置信概率有几次到几次测量和[​IMG]一样,不过我就不这么认真了)。大家也知道这个早先的物理学家对这个很不满,你一个确定性的方程怎么就弄出概率了呢?而且更重要的是,你的测量仪器加上你自己都可以统一用量子力学刻画呀,为什么joint system的薛定谔方程解不是确定的?所以才有了隐变量理论,只是有未发现的信息,根本没有什么玄奥的叠加态,你只是没控制好隐变量(因为你连知道都不知道当然它就悄悄地均匀分布了),导致你制备的态压根就是有[​IMG][​IMG]一样,只是你不知道,所谓的[​IMG]只是另一个更底层的确定性理论的贝叶斯概率(贝叶斯表示:怪我咯),由于缺少信息而造成的概率,你看,听起来是不是特别有道理?其实楼上很多所谓的对薛定谔猫态的解释都是贝叶斯概率的问题,这实际上说的是隐变量解释,例如把妹,其实成不成妹子心理早已有数,就是那个隐变量,只是你不知道,所以在你看来以为存在概率,如果你sample的时候没有控制这个变量,那看起来好像真的存在概率,但是其实如果你严格控制好所有的变量(所有隐变量都观察到了并且控制好),那就不存在概率了(即便按最高票所说是由于你表白造成的扰动导致妹子做出某某决策,也只是增加了一个表白姿势的隐变量参数而已,不改变本质)。当然频率学派不赞同这个概率,因为这似乎不是真的“概率”——尽管很有用。顺便强调一下,楼上诸位说的“猫有一定概率是死的有一定概率是活的”和“猫处在死和活的叠加态上(which实际上是和死和活都不同的状态)”完全不是一个概念,这个悖论或者说佯谬(如果完全得以解释就成了佯谬,但问题是还没有)导出的是后者,而隐变量理论倾向于认为是前者,确切地说是“有一定的贝叶斯概率given你所知道的信息是死的/活的”。希望大家仔细思考一下这个区别。

    不幸的是,隐变量理论被贝尔不等式的实验排除了,有兴趣的可以去查一查。也就是说刚才的解释并不正确,波函数真的在叠加态上而不是有一个隐变量控制。那么问题就回来了,测量也是量子系统,概率到底是哪儿来的?可能是我学艺不精,但是量子力学课到这里就不再深入下去了,转去了更重要的微扰论啊多粒子系统一类的技术问题(是的,测量问题虽然基本但是没什么用,而且背后有无数paper至今似乎没有定论,量子力学教育一般都避之不及,何况人们基于量子力学建立了很多解释世界很有用的理论,介绍它们明显更重要一些)。倒是有一些经典教材例如朗道仔细讨论过测量,但是测量必须依赖于“仪器是经典的,没有量子效应”这个假设,也就是说量子力学中测量的定义居然要依赖于一个不遵从量子力学法则的玩意儿,虽然“严格”但仍不能让人满意,不过是一个realistic的solution,毕竟仪器我们都知道经典物理work得很好。

    =========================================================================
    写到这里突然发现细思恐极,写不下去了,于是找了一票人讨论了一下,越发感觉这是个深坑,后面我再仔细说……后面的讨论将涉及一些有争议的诠释,我其实不知道具体在这个领域里最up to date的观点发展到了什么程度,还望指正。
    =========================================================================

    另一方面,有一个很容易被忽略的理论统计力学也许在这个问题上很有帮助。事实上,我当时量子统计的老师说过一句话让我印象非常深刻:统计没有经典的和量子的之分,只有正确和错误之分。后来的学习中我经常回味这句话,统计力学刻画的是多粒子宏观行为,如果基于经典物理的统计力学和基于量子物理的统计力学造成了不同,一定会有一个产生易于判断的结果,所以学平衡态统计物理的时候我们一直是用半经典(或者说半量子)的手段,手加进很多例如普朗克常数一类的离散化的技术,当然一方面是考虑到我们的接受能力(学统计在学量子之前),另一方面就是纯经典的很多时候完全不make sense。扯远了,在经典统计里,我们知道统计系综完全只是个工具,经典力学是确定性的,只是粒子数太大我们做不了严格计算,就用个各态历经糊弄一下搞成统计系综处理问题。

    但是到了量子统计麻烦就大了,物理系的同学们有没有发现到了量子统计的时候老师突然就悄悄不提各态历经了?那是因为:各态历经是什么鬼!我们来看微正则系综好了,给定一个能量壳[​IMG],能量本征态构成完备基,系统处在一个态[​IMG]上,不同能量本征态彼此正交,那随着时间演化所有和[​IMG]正交的能量为[​IMG]的态都和这个态正交!各态历经?你逗我。。。(因此我一直觉得研究各态历经不是个严肃的物理学问题因为如果基础理论是量子论的话根本没有各态历经)当年的统计物理学家到了这里就认怂了,所以现在统计力学里的概率连假惺惺的假设都不用做,直接手加进来就好了,只是加的方式保持和经典一致罢了(详见Pathria的统计力学,如果有兴趣的话)。这种手加进去一定概率在这个态上一定概率在那个态上的东西叫做混合态,和刚才说的叠加态完全不是一回事儿,也不是贝叶斯概率(不要问我这个概率到底是怎么回事儿,我到现在还迷糊着)。混合态我们可以用密度矩阵来表达,比如0.5概率在活这个态,0.5概率在死这个态,密度矩阵长这样:
    [​IMG],
    意思是要是你制备10000个这样的系统,有5000个是活的5000个是死的(不要纠结概率表述是不是严格,写严格了太长)在注意生和死的叠加态长这样
    [​IMG],
    也就是说换个基底就变成了[​IMG]。所有量子态都这样,因为它的意思就是系统有100%的概率在这个态上,或者说你制备10000个这种系统,10000个都在叠加态上。这也就是系综的概念,当然,没有系综谈密度矩阵也是耍流氓。

    好了,现在回来讨论量子力学中玄之又玄甚至还把唯心主义炸了出来的测量。前面说过量子力学中严格的讨论是需要测量仪器是经典的,被测量的系统是量子的才可以,这显然不能让人满意,测量仪器为什么不能用量子理论描述?这我也没办法,我们想想量子力学的测量是啥好了。一个ideal的有数学定义的测量就是拿个operator往中间一放,就拉倒了,别的都不管。可是现实中不是啊,比如薛定谔猫问题,假设这个系统和宇宙所有东西全都decouple,毫无相互作用,那你说猫是死的还是活的没有意义啊,就是Pauli所说的相当于“一个针尖上能坐多少个天使”的问题,好吧,那我们拿来一个猫死活探测器,死的时候显示1活的时候显示0,和它相互作用一下,看这个探测器示数怎么样,完蛋了,我还是可以说总系统在[​IMG]上,用第一位代表示数,第二位代表猫的死活(直积氰化物的状态,既然这个是绑定的就不单拿出来了),那好吧我在加进来东西测量……无穷无尽下去就算你把整个宇宙都加进来都没有帮助。那我现在一定要问你猫是死的还是活的?我这个猫/氰化物系统和外界有相互作用(比如说整个宇宙就是这个盖革计数器+猫+死活探测器吧),也就是说系统是猫,环境是死活探测器,但我不关心环境,就想知道我这个系统所处的状态(猫到底是死是活还是死活叠加态还是什么鬼),我就需要约化密度矩阵来刻画,于是
    [​IMG],瞧,是个混合态!也就是说如果我们只被confine在系统里,猫或者是死或者是活,不会是叠加态。但如果我们的环境不是死活探测器,是个不顶用的死活探测器呢?也就是说,没啥相互作用或者有也基本没有关联,总系统处在直积态上,[​IMG],那约化密度矩阵就成了[​IMG],这个是我们见过的,系统以100%概率处在叠加态上的尿性。如果这不是个死活探测器但总归有些相互作用,那约化密度矩阵不会完全将死活decouple,但随着correlation的增强会越来越decouple。

    好了我们看见了,系统和环境的关联越强,系统的约化密度矩阵就越远离纯态,这和测量与否没啥关系,只和哈密顿量的性质有关,但是我们也知道如果想做测量,当然我们希望仪器和系统关系越强越好,所以测量才会有这种效果。

    (下面胡扯时间开始,哦当然我也不确保上面就没胡扯,不过至少我自己觉得好像没胡扯)不过如果一个系统很大,那它和外界align的可能性也就大(因为相互作用强?),就更像经典,也就是量子系统的退相干。如果你问为什么align出来的是死和活而不是binding/anti-binding,那这实际上是因果倒置,是最后形成的decouple的混合态才是你看到的经典态。有人以前觉得大脑的运行是不是和量子效应有关,然后好象是Penrose还是谁估算了个退相干长度,远小于神经元尺度,所以大脑的机制应该是经典的,不过这个我也记不清了,也不知道靠谱不靠谱,还懒得查参考资料,权当一乐好了,谁有兴趣一定要自己考证,这段我说的都不能太信。而且退相干的具体机制(刚才只是吹吹牛,真实情况实验做出来理论算出来才算pass)现在还远远没有到能给个答案的时候,所以这个问题很难有个回答。

    ==========================================================================
    可以开始看的分割线
    ==========================================================================
    总结一下,说了这么多话其实没有回答题主的问题,因为这一坨翔是不能给高中生讲的,但我为什么还要答呢?

    1、上面的高票答案实际上是错误的。而且更严重的是,有着这样错误理解的人还很多,大致就是因为这种错误类比的广泛传播,然后弄得似乎这个问题可以这样就理解清了,个人感觉这样对科普反而是有害的。

    2、这个悖论/佯谬虽然问出来快100年了,但一点都不简单。直到今天也很难有一个科学上没有问题全都说得过去的解释(隐变量倒是well defined,但是被rule out了),其实很多科学家也都选择了refuse to answer的态度,这也难怪,这个问题又难以定义出来一个无争议的科学问题又发不了paper也拿不到funding,加上量子力学的计算+解释能力很强,无怪乎科学家们倾向于选择实用主义的理解方式。

    3、这个问题究竟是不是一个科学问题也有争议,也许只是个哲学层面的问题,既然定义不出来一个well defined的实验可以来做或者理论可以来算的问题,就实在没法研究。

    4、既然要向高中生科普,强烈不建议选择薛定谔猫这种学术界都说不清的问题,这玩意儿只会造成更加混乱,要是刺激了对物理的兴趣去学物理倒是好事,可要是刺激了自己研究的欲望造就了一票民科恐怕就呵呵呵了。现代物理并不是除了这个就没有可以科普的,比如相对论(狭义和广义)都很容易让中学生理解,除了广义相对论的计算细节以外都很容易科普,再比如对称性自发破缺,也是可以科普的问题(让高中生听懂毫无压力,还能激发大家的兴趣,我试过),选择科学界说不清甚至可能不计划去说清的问题去科普绝对不是好主意。

    5、我知道这个问题有很多形而上的讨论余地,不过我不喜欢。哲学问题的讨论一律不欢迎,如果有错误需要纠正/反驳/破口大骂,请针对干货。

    查看知乎原文
     
正在加载...