Apache Spark 1.4 发布,该版本将 R API 引入 Spark,同时提升了 Spark 的核心引擎和 MLlib ,以及 Spark Streaming 的可用性。部分重要更新如下: Spark Core Spark core 有多各方面的改进,主要集中在操作,性能和兼容性上: SPARK-6942: Visualization for Spark DAGs and operational monitoring SPARK-4897: Python 3 support SPARK-3644: A REST API for application information SPARK-4550: Serialized shuffle outputs for improved performance SPARK-7081: Initial performance improvements in project Tungsten SPARK-3074: External spilling for Python groupByKey operations SPARK-3674: YARN support for Spark EC2 and SPARK-5342: Security for long running YARN applications SPARK-2691: Docker support in Mesos and SPARK-6338: Cluster mode in Mesos 更多内容请查看 发行说明。 Spark 1.4下载请点这里: downloads 。 Apache Spark 是一种与 Hadoop 相似的开源集群计算环境,但是两者之间还存在一些不同之处,这些有用的不同之处使 Spark 在某些工作负载方面表现得更加优越,换句话说,Spark 启用了内存分布数据集,除了能够提供交互式查询外,它还可以优化迭代工作负载。 Spark 是在 Scala 语言中实现的,它将 Scala 用作其应用程序框架。与 Hadoop 不同,Spark 和 Scala 能够紧密集成,其中的 Scala 可以像操作本地集合对象一样轻松地操作分布式数据集。 尽 管创建 Spark 是为了支持分布式数据集上的迭代作业,但是实际上它是对 Hadoop 的补充,可以在 Hadoo 文件系统中并行运行。通过名为 Mesos 的第三方集群框架可以支持此行为。Spark 由加州大学伯克利分校 AMP 实验室 (Algorithms, Machines, and People Lab) 开发,可用来构建大型的、低延迟的数据分析应用程序。 Apache Spark 1.4 发布,开源集群计算系统下载地址