Spark 1.5.0 是 1.x 系列的第六个版本,收到 230+ 位贡献者和 80+ 机构的努力,总共 1400+ patches。值得关注的改进如下: APIs:RDD, DataFrame 和 SQL 后端执行:DataFrame 和 SQL 集成:数据源,Hive, Hadoop, Mesos 和集群管理 R 语言 机器学习和高级分析 Spark Streaming Deprecations, Removals, Configs 和 Behavior 改进 Spark Core Spark SQL & DataFrames Spark Streaming MLlib 已知问题解决 SQL/DataFrame Streaming Credits 下载:spark-1.5.0.tgz 详细改进请看发行说明和更新日志。 新特性列表: [SPARK-1855] - Provide memory-and-local-disk RDD checkpointing [SPARK-4176] - Support decimals with precision > 18 in Parquet [SPARK-4751] - Support dynamic allocation for standalone mode [SPARK-4752] - Classifier based on artificial neural network [SPARK-5133] - Feature Importance for Random Forests [SPARK-5155] - Python API for MQTT streaming [SPARK-5962] - [MLLIB] Python support for Power Iteration Clustering [SPARK-6129] - Create MLlib metrics user guide with algorithm definitions and complete code examples. [SPARK-6390] - Add MatrixUDT in PySpark [SPARK-6487] - Add sequential pattern mining algorithm PrefixSpan to Spark MLlib [SPARK-6813] - SparkR style guide [SPARK-6820] - Convert NAs to null type in SparkR DataFrames [SPARK-6833] - Extend `addPackage` so that any given R file can be sourced in the worker before functions are run. [SPARK-6964] - Support Cancellation in the Thrift Server [SPARK-7083] - Binary processing dimensional join [SPARK-7254] - Extend PIC to handle Graphs directly [SPARK-7293] - Report memory used in aggregations and joins [SPARK-7368] - add QR decomposition for RowMatrix [SPARK-7387] - CrossValidator example code in Python [SPARK-7422] - Add argmax to Vector, SparseVector [SPARK-7440] - Remove physical Distinct operator in favor of Aggregate [SPARK-7547] - Example code for ElasticNet [SPARK-7604] - Python API for PCA and PCAModel [SPARK-7605] - Python API for ElementwiseProduct [SPARK-7639] - Add Python API for Statistics.kernelDensity [SPARK-7690] - MulticlassClassificationEvaluator for tuning Multiclass Classifiers [SPARK-7879] - KMeans API for spark.ml Pipelines [SPARK-7888] - Be able to disable intercept in Linear Regression in ML package [SPARK-7988] - Mechanism to control receiver scheduling [SPARK-8019] - [SparkR] Create worker R processes with a command other then Rscript [SPARK-8124] - Created more examples on SparkR DataFrames [SPARK-8129] - Securely pass auth secrets to executors in standalone cluster mode [SPARK-8169] - Add StopWordsRemover as a transformer [SPARK-8302] - Support heterogeneous cluster nodes on YARN [SPARK-8313] - Support Spark Packages containing R code with --packages [SPARK-8344] - Add internal metrics / logging for DAGScheduler to detect long pauses / blocking [SPARK-8348] - Add in operator to DataFrame Column [SPARK-8364] - Add crosstab to SparkR DataFrames [SPARK-8431] - Add in operator to DataFrame Column in SparkR [SPARK-8446] - Add helper functions for testing physical SparkPlan operators [SPARK-8456] - Python API for N-Gram Feature Transformer [SPARK-8479] - Add numNonzeros and numActives to linalg.Matrices [SPARK-8484] - Add TrainValidationSplit to ml.tuning [SPARK-8522] - Disable feature scaling in Linear and Logistic Regression [SPARK-8538] - LinearRegressionResults class for storing LR results on data [SPARK-8539] - LinearRegressionSummary class for storing LR training stats [SPARK-8551] - Python example code for elastic net [SPARK-8564] - Add the Python API for Kinesis [SPARK-8579] - Support arbitrary object in UnsafeRow [SPARK-8598] - Implementation of 1-sample, two-sided, Kolmogorov Smirnov Test for RDDs [SPARK-8600] - Naive Bayes API for spark.ml Pipelines [SPARK-8671] - Add isotonic regression to the pipeline API [SPARK-8704] - Add missing methods in StandardScaler (ML and PySpark) [SPARK-8706] - Implement Pylint / Prospector checks for PySpark [SPARK-8711] - Add additional methods to JavaModel wrappers in trees [SPARK-8774] - Add R model formula with basic support as a transformer [SPARK-8777] - Add random data generation test utilities to Spark SQL [SPARK-8782] - GenerateOrdering fails for NullType (i.e. ORDER BY NULL crashes) [SPARK-8798] - Allow additional uris to be fetched with mesos [SPARK-8807] - Add between operator in SparkR [SPARK-8847] - String concatination with column in SparkR [SPARK-8867] - Show the UDF usage for user. [SPARK-8874] - Add missing methods in Word2Vec ML [SPARK-8882] - A New Receiver Scheduling Mechanism [SPARK-8936] - Hyperparameter estimation in LDA [SPARK-8967] - Implement @since as an annotation [SPARK-8996] - Add Python API for Kolmogorov-Smirnov Test [SPARK-9022] - UnsafeProject [SPARK-9023] - UnsafeExchange [SPARK-9024] - Unsafe HashJoin [SPARK-9028] - Add CountVectorizer as an estimator to generate CountVectorizerModel [SPARK-9112] - Implement LogisticRegressionSummary similar to LinearRegressionSummary [SPARK-9115] - date/time function: dayInYear [SPARK-9143] - Add planner rule for automatically inserting Unsafe <-> Safe row format converters [SPARK-9178] - UTF8String empty string method [SPARK-9201] - Integrate MLlib with SparkR using RFormula [SPARK-9230] - SparkR RFormula should support StringType features [SPARK-9231] - DistributedLDAModel method for top topics per document [SPARK-9245] - DistributedLDAModel predict top topic per doc-term instance [SPARK-9246] - DistributedLDAModel predict top docs per topic [SPARK-9263] - Add Spark Submit flag to exclude dependencies when using --packages [SPARK-9381] - Migrate JSON data source to the new partitioning data source [SPARK-9391] - Support minus, dot, and intercept operators in SparkR RFormula [SPARK-9440] - LocalLDAModel should save docConcentration, topicConcentration, and gammaShape [SPARK-9464] - Add property-based tests for UTF8String [SPARK-9471] - Multilayer perceptron classifier [SPARK-9544] - RFormula in Python [SPARK-9657] - PrefixSpan getMaxPatternLength should return an Int [SPARK-10106] - Add `ifelse` Column function to SparkR Apache Spark 是一种与 Hadoop 相似的开源集群计算环境,但是两者之间还存在一些不同之处,这些有用的不同之处使 Spark 在某些工作负载方面表现得更加优越,换句话说,Spark 启用了内存分布数据集,除了能够提供交互式查询外,它还可以优化迭代工作负载。 Spark 是在 Scala 语言中实现的,它将 Scala 用作其应用程序框架。与 Hadoop 不同,Spark 和 Scala 能够紧密集成,其中的 Scala 可以像操作本地集合对象一样轻松地操作分布式数据集。 尽 管创建 Spark 是为了支持分布式数据集上的迭代作业,但是实际上它是对 Hadoop 的补充,可以在 Hadoo 文件系统中并行运行。通过名为 Mesos 的第三方集群框架可以支持此行为。Spark 由加州大学伯克利分校 AMP 实验室 (Algorithms, Machines, and People Lab) 开发,可用来构建大型的、低延迟的数据分析应用程序。 Apache Spark 1.5.0 正式发布下载地址