1. XenForo 1.5.14 中文版——支持中文搜索!现已发布!查看详情
  2. Xenforo 爱好者讨论群:215909318 XenForo专区

是否存在一个棱长、面对角线和体对角线都是整数的长方体?

本帖由 漂亮的石头2022-06-11 发布。版面名称:知乎日报

  1. 漂亮的石头

    漂亮的石头 版主 管理成员

    注册:
    2012-02-10
    帖子:
    486,020
    赞:
    46
    [​IMG] 东城居士,读万卷书,行万里路。 阅读原文

    这是一个十分有趣而又非常深刻的数学问题!

    我们把棱、面对角线和体对角线都是整数的长方体称为 完全有理长方体.。所以问题变成了:是否存在完全有理长方体?此问题其实等价于下述丢番图方程组

    [​IMG]

    是否有非零整数解。

    完全有理长方体是否存在这一问题是一个古老的数学问题,在 Euler 的时代就已知晓,但至今尚未解决,所以这目前这仍然是一个公开问题.。1984 年,Korec 证明了:不存在最短棱小于等于 [​IMG] 的完全有理长方体.。2004 年,ButlerKorec 的结果改进为:不存在最短棱小于等于 [​IMG] 的完全有理长方体。

    若长方体的棱、面对角线和体对角线中有一个为无理数,则称这样的长方体为 半完全有理长方体. 那是否存在半完全有理长方体?此时答案是肯定的。我们分下述两种情形:

    1、面对角线为无理数

    此时问题等价于下述丢番图方程组

    [​IMG]

    是否有非零整数解. 不难验证 [​IMG] 为上述方程的一组解。

    2、体对角线为无理数

    此时问题等价于下述丢番图方程组

    [​IMG]

    是否有非零整数解. 不难验证:

    [​IMG]

    为上述方程组的一组解。 事实上,上述方程组有无穷多组解。 比如,1772 年,数学大师 Euler 得到了上述方程组的一族解:

    [​IMG]

    其中 [​IMG] 为整数. 比如取 [​IMG],可得:

    [​IMG]

    显然此解与:

    [​IMG]

    得到的是同一个长方体。

    2001 年,Narumiya Shiga 又得到了上述方程组的另一族解

    [​IMG]

    其中 [​IMG] 为整数。 若取 [​IMG],则可得:

    [​IMG]

    事实上,半完全有理长方体问题的求解与 椭圆曲线Kummer 曲面 K3 曲面 等非常现代的数学理论有关!

    阅读原文
     
正在加载...